Scikit-Learn Cheatsheet
Scikit-learn is a library in Python that provides many unsupervised and supervised learning algorithms. It’s built upon some of the technology you might already be familiar with, like NumPy, pandas, and Matplotlib!
As you build robust Machine Learning programs, it’s helpful to have all the sklearn
commands all in one place in case you forget.
Linear Regression
Import and create the model:
from sklearn.linear_model import LinearRegressionyour_model = LinearRegression()
Fit:
your_model.fit(x_training_data, y_training_data)
.coef_
: contains the coefficients.intercept_
: contains the intercept
Predict:
predictions = your_model.predict(your_x_data)
.score()
: returns the coefficient of determination R²
Naive Bayes
Import and create the model:
from sklearn.naive_bayes import MultinomialNByour_model = MultinomialNB()
Fit:
your_model.fit(x_training_data, y_training_data)
Predict:
# Returns a list of predicted classes - one prediction for every data pointpredictions = your_model.predict(your_x_data)# For every data point, returns a list of probabilities of each classprobabilities = your_model.predict_proba(your_x_data)
K-Nearest Neighbors
Import and create the model:
from sklearn.neighbors import KNeighborsClassifieryour_model = KNeighborsClassifier()
Fit:
your_model.fit(x_training_data, y_training_data)
Predict:
# Returns a list of predicted classes - one prediction for every data pointpredictions = your_model.predict(your_x_data)# For every data point, returns a list of probabilities of each classprobabilities = your_model.predict_proba(your_x_data)
K-Means
Import and create the model:
from sklearn.cluster import KMeansyour_model = KMeans(n_clusters=4, init='random')
n_clusters
: number of clusters to form and number of centroids to generateinit
: method for initializationk-means++
: K-Means++ [default]random
: K-Means
random_state
: the seed used by the random number generator [optional]
Fit:
your_model.fit(x_training_data)
Predict:
predictions = your_model.predict(your_x_data)
Validating the Model
Import and print accuracy, recall, precision, and F1 score:
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_scoreprint(accuracy_score(true_labels, guesses))print(recall_score(true_labels, guesses))print(precision_score(true_labels, guesses))print(f1_score(true_labels, guesses))
Import and print the confusion matrix:
from sklearn.metrics import confusion_matrixprint(confusion_matrix(true_labels, guesses))
Training Sets and Test Sets
from sklearn.model_selection import train_test_splitx_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.8, test_size=0.2)
train_size
: the proportion of the dataset to include in the train splittest_size
: the proportion of the dataset to include in the test splitrandom_state
: the seed used by the random number generator [optional]
Happy Coding!
Author
'The Codecademy Team, composed of experienced educators and tech experts, is dedicated to making tech skills accessible to all. We empower learners worldwide with expert-reviewed content that develops and enhances the technical skills needed to advance and succeed in their careers.'
Meet the full teamRelated articles
Learn more on Codecademy
- Career path
Data Scientist: Machine Learning Specialist
Machine Learning Data Scientists solve problems at scale, make predictions, find patterns, and more! They use Python, SQL, and algorithms.Includes 27 CoursesWith Professional CertificationBeginner Friendly90 hours - Free course
Machine Learning: Introduction with Regression
Get started with machine learning and learn how to build, implement, and evaluate linear regression models.Beginner Friendly3 hours