We can convert hexadecimal to decimal in a similar way we converted binary to decimal, using the powers method. As a reminder, hexadecimal digits have 16 possible values, 0-9 and *a-f*.

A famous hexadecimal number in the early days of personal computers was 0xFF (one full byte). We convert it to decimal form this (remember to scroll tables):

power | 1 | 0 |
---|---|---|

value | 16 | 1 |

number | F | F |

decimal | 15 | 15 |

product | 240 | 15 |

Let’s multiply the value times the decimal number first:

`$15 \cdot 16 + 1 \cdot 15$`

Which gives us the values in the bottom row:

`$240 + 15 = 255$`

in decimal.

Here is another example for 0xF891:

power | 3 | 2 | 1 | 0 |
---|---|---|---|---|

value | 4096 | 256 | 16 | 1 |

number | F | 8 | 9 | 1 |

decimal | 15 | 8 | 9 | 1 |

product | 61440 | 2048 | 138 | 1 |

So, we multiplied decimal number times value:

`$4096 \cdot 15 + 256 \cdot 8 + 16 \cdot 9 + 1 \cdot 1$`

to get:

`$61440 + 2048 + 144 + 1 = 63633$`

in decimal as a result.

### Instructions

**1.**

Use the power method to convert 0x19BCF to decimal.

Assign your answer to `checkpoint_1`

in the code editor.

**2.**

Use the power method to convert 0xBCE to decimal.

Assign your answer to `checkpoint_2`

in the code editor.

**3.**

Use the power method to convert 0x650 to decimal.

Assign your answer to `checkpoint_3`

in the code editor.