Codecademy Logo

Quantum Encryption Basics

Introduction to Quantum Encryption

Foundational concepts in traditional encryption face evolving threats from quantum computing. Quantum encryption uses quantum mechanics principles to enhance data security in this new era.

# Introducing foundational aspects of quantum encryption
# A class to illustrate classical and quantum encryption comparison
class EncryptionComparison:
def __init__(self, classical_method, quantum_method):
self.classical_method = classical_method
self.quantum_method = quantum_method
def explain_difference(self):
return f"Classical Method: {self.classical_method}\nQuantum Method: {self.quantum_method}"
# Demonstrate the need for quantum encryption
comparison = EncryptionComparison(
classical_method="RSA Algorithm",
quantum_method="Quantum Key Distribution (QKD)")
print(comparison.explain_difference())

Qubits and Quantum Encryption

Quantum encryption utilizes qubits’ ability to exist in multiple states simultaneously (superposition). This multi-state system allows for generating truly random keys and detecting eavesdropping via quantum state collapse.

# Quantum encryption concept using qubits for random key generation
from qiskit import QuantumCircuit, execute, Aer
# Create a quantum circuit with 1 qubit and 2 classical bits
def generate_random_key():
qc = QuantumCircuit(1, 1)
# Put the qubit in superposition
qc.h(0)
# Measure the qubit
qc.measure(0, 0)
# Execute the circuit and get the result
simulator = Aer.get_backend('qasm_simulator')
result = execute(qc, simulator, shots=1).result()
counts = result.get_counts(qc)
# Result is random due to quantum superposition
return list(counts.keys())[0] == '1'
print("Random key bit:", generate_random_key())

Classical Encryption Vulnerability

Classical encryption techniques, like RSA and AES, depend on algorithmic hardness, making them vulnerable to quantum attacks. Quantum computers can potentially break these ciphers rapidly, necessitating advancements like quantum cryptography to secure data.

# RSA encryption vulnerability to quantum computing
# Using Shor's algorithm on a quantum computer can factor large numbers quickly,
# breaking conventional RSA keys.
# Placeholder function simulating the concept:
def rsa_vulnerable_to_quantum(p, q):
# Classical computation: hard to factorize; provides security
modulus = p * q
print('Classically secure modulus:', modulus)
# Quantum advantage: leveraging Shor's algorithm
try:
shors_algorithm_resolution = simulate_shors_algorithm(modulus)
print('Quantum-vulnerable modulus:', shors_algorithm_resolution)
except:
print('Quantum computer needed for Shor’s algorithm.')
rsa_vulnerable_to_quantum(61, 53)

Quantum Key Distribution (QKD)

Quantum Key Distribution (QKD) relies on the principles of quantum superposition to detect eavesdropping. Any interception causes the quantum state to collapse, quickly revealing a security breach.

# Simulating the Quantum Key Distribution process
class QKD:
def __init__(self, key_length):
self.key_length = key_length
self.key = self.generate_quantum_key()
def generate_quantum_key(self):
# Fictitious function to generate a random key using quantum properties
return [round(random.random()) for _ in range(self.key_length)]
def detect_eavesdropping(self, intercepted_key):
return self.key != intercepted_key
# Demonstration
qkd = QKD(10)
print("Original Quantum Key:", qkd.key)
# An intercepted key will differ, simulating exposure
intercepted_key = [0 if bit == 1 else 1 for bit in qkd.key] # Fictitious example
print("Eavesdropping detected:", qkd.detect_eavesdropping(intercepted_key))

Learn more on Codecademy