Python:NumPy .clip()
Anonymous contributor
Published Nov 1, 2025
Contribute to Docs
Numpy’s .clip() method limits the values in an array to a specified range by replacing values below a minimum or above a maximum with those boundary values.
Syntax
ndarray.clip(min=None, max=None, out=None)
Parameters:
min: The minimum value to clip array elements to. All values below this will be set tomin.max: The maximum value to clip array elements to. All values above this will be set tomax.out: Output array for storing the result. Must have the same shape as the input array.
Return value:
Returns an array in which all values are clipped to the specified range. If out is provided, the result is stored in it and a reference to out is returned.
Example 1: Clipping an Array Using .clip()
In this example, .clip() is used without the out parameter to restrict all values of an array to a given range:
import numpy as np# Create an arraynp_array = np.array([0, 1, 1, 2, 3, 5, 8, 13, 21])# Clip values between 3 and 9clipped_array = np_array.clip(min=3, max=9)# Print clipped arrayprint("Clipped Array: ", clipped_array)
The output of this code is:
Clipped Array: [3 3 3 3 3 5 8 9 9]
Example 2: Element-Wise Clipping Using .clip()
This example demonstrates using arrays for min and max to clip values element-wise:
import numpy as npnp_array = np.array([[[20, -1, 12], [2, -3, 50]]])output_array = np.empty_like(np_array)min_vals = np.array([[[-1, 4, 7], [10, -13, 16]]])max_vals = np.array([[[2, 5, 11], [13, 17, 19]]])np_array.clip(min_vals, max_vals, out=output_array)print("Clipped Array:\n", output_array)
The output of this code is:
Clipped Array:[[[ 2 4 11][10 -3 19]]]
Codebyte Example
In this example, .clip() is provided with an integer for min and an array for max:
All contributors
- Anonymous contributor
Contribute to Docs
- Learn more about how to get involved.
- Edit this page on GitHub to fix an error or make an improvement.
- Submit feedback to let us know how we can improve Docs.
Learn Python:NumPy on Codecademy
- Looking for an introduction to the theory behind programming? Master Python while learning data structures, algorithms, and more!
- Includes 6 Courses
- With Professional Certification
- Beginner Friendly.75 hours
- Learn the basics of Python 3.12, one of the most powerful, versatile, and in-demand programming languages today.
- With Certificate
- Beginner Friendly.24 hours