.density_contour()

dakshdeepHERE's avatar
Published Feb 25, 2025
Contribute to Docs

The .density_contour() function in Plotly Express creates a contour plot that visualizes the density of data points in a two-dimensional space. It highlights regions where points cluster, helping to reveal patterns within the data.

Syntax

plotly.express.density_contour(
  data_frame=None,
  x=None,
  y=None,
  z=None,
  color=None,
  facet_row=None,
  facet_col=None,
  facet_col_wrap=None,
  marginal=None,
  trendline=None,
  histfunc=None,
  histnorm=None,
  cumulative=None,
  nbinsx=None,
  nbinsy=None,
  range_x=None,
  range_y=None,
  labels=None,
  title=None,
  template=None,
  width=None,
  height=None,
  **kwargs
)
Parameter Description
data_frame A DataFrame or array-like object containing the data.
x, y, z Columns from data_frame (or array-like object) for the x, y, and z axes.
color Sets the color for contours based on a variable or value.
facet_row, facet_col Splits the figure into subplots along rows or columns based on a categorical variable.
nbinsx, nbinsy Number of bins along the x and y axes, which control the contour resolution.
range_x, range_y Helps manually set the range for the x and y axes.
labels Customizes axis labels and legend entries.
title Specifies a title for the figure.
template Applies a predefined figure template (e.g., "plotly", "ggplot2", or "seaborn").
width, height Sets the figure’s width and height in pixels.
**kwargs Additional keyword arguments to further modify the plot’s appearance or behavior.

Example

The example below creates a 2D density contour plot using randomly generated data:

import plotly.express as px
import numpy as np
import pandas as pd
# Generate random data
np.random.seed(42)
df = pd.DataFrame({
"x": np.random.randn(500),
"y": np.random.randn(500)
})
# Create a 2D density contour plot
fig = px.density_contour(
data_frame=df,
x="x",
y="y",
nbinsx=30,
nbinsy=30,
title="2D Density Contour Plot"
)
fig.show()

This code generates a contour plot that illustrates the density of data points across a two-dimensional space. Here’s what the output looks like:

The output for the above example

All contributors

Contribute to Docs