.violin()
Anonymous contributor
Anonymous contributor1 total contribution
Anonymous contributor
Published May 31, 2024
Contribute to Docs
In Plotly, the .violin()
method generates a violin plot. This plot uses kernel density estimation (KDE) to display the distribution of numeric data, providing a detailed view of data density across different values.
Syntax
plotly.express.violin(data_frame=None, x=None, y=None, color=None, facet_row=None, facet_col=None, ...)
data_frame
: It is the input data as a Pandas DataFrame.x
: It specifies the column name for the x-axis categories.y
: It specifies the column name for the y-axis numeric data.color
: It specifies the column name for color-coding categories.facet_row
: It specifies the column name to create row-wise subplots.facet_col
: It specifies the column name to create column-wise subplots.
Note: The ellipsis (…) indicates that there can be additional optional parameters beyond those listed here.
Example
Here is an example of creating a violin plot using the .violin()
method:
# Importing necessary librariesimport plotly.express as px # Importing 'plotly.express' for data visualizationimport pandas as pd # Importing 'pandas' for data manipulation and analysis# Creating a sample dataset by defining a dictionary with two keys: 'Category' and 'Value'data = {'Category': ['A', 'A', 'A', 'B', 'B', 'B', 'C', 'C', 'C'],'Value': [1, 2, 3, 4, 5, 6, 7, 8, 9]}# Converting the dictionary into a Pandas DataFramedf = pd.DataFrame(data)# Using Plotly Express to create a violin plot with 'Category' on the x-axis and 'Value' on the y-axisfig = px.violin(df, x="Category", y="Value")# Displaying the plotfig.show()
The above code produces the following output:
All contributors
- Anonymous contributorAnonymous contributor1 total contribution
- Anonymous contributor
Looking to contribute?
- Learn more about how to get involved.
- Edit this page on GitHub to fix an error or make an improvement.
- Submit feedback to let us know how we can improve Docs.