.bitwise_or()
Published May 12, 2025
Contribute to Docs
In PyTorch, the .bitwise_or()
function computes the element-wise bitwise OR operation between two input tensors. For each pair of bits in the binary representation of the input elements, it returns 1
if at least one of the bits is 1
, and 0
otherwise. This function supports integer tensors (signed or unsigned) and boolean tensors (where it performs a bitwise OR that behaves like a logical OR).
Syntax
torch.bitwise_or(input, other, *, out=None)
Parameters:
input
: The first input tensor. Must be of integer or boolean type.other
: The second input tensor. Must be broadcastable withinput
and of the same type.out
(Optional): A tensor for storing the output result.
Return value:
The .bitwise_or()
function returns a new tensor containing the result of applying the bitwise OR operation to each pair of elements in the input tensors.
Example: Using torch.bitwise_or()
with Integer and Boolean Tensors
The following example illustrates the usage of the .bitwise_or()
function in PyTorch:
import torch# Integer tensor exampletensor1 = torch.tensor([5, 3], dtype=torch.int32) # Binary: 0101, 0011tensor2 = torch.tensor([3, 7], dtype=torch.int32) # Binary: 0011, 0111result_int = torch.bitwise_or(tensor1, tensor2)print(result_int)# Boolean tensor exampletensor_bool1 = torch.tensor([True, False])tensor_bool2 = torch.tensor([False, False])result_bool = torch.bitwise_or(tensor_bool1, tensor_bool2)print(result_bool)
The above code produces the following output:
tensor([7, 7], dtype=torch.int32)tensor([ True, False])
In this example:
5 | 3
(binary0101
|0011
) results in0111
(decimal7
).3 | 7
(binary0011
|0111
) results in0111
(decimal7
).True | False
evaluates toTrue
.False | False
evaluates toFalse
.
Contribute to Docs
- Learn more about how to get involved.
- Edit this page on GitHub to fix an error or make an improvement.
- Submit feedback to let us know how we can improve Docs.
Learn PyTorch on Codecademy
- Career path
Data Scientist: Machine Learning Specialist
Machine Learning Data Scientists solve problems at scale, make predictions, find patterns, and more! They use Python, SQL, and algorithms.Includes 27 CoursesWith Professional CertificationBeginner Friendly95 hours - Free course
Intro to PyTorch and Neural Networks
Learn how to use PyTorch to build, train, and test artificial neural networks in this course.Intermediate3 hours